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1. Introduction1. Introduction

� A Simple Question:

What is “TIME”?

� Am I asking a silly question?
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� If no one asks me,

I know;

� But if I want to explain it to a questioner,

I don’t know.

Augustine of Hippo (Confessions XI, XIV)

What, then is time?
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Why time?
� Time plays an fundamental role in modelling natural 

phenomena and human activities concerning the dynamic 
aspects of the real world.

� Temporal reference is an idea deeply integrated in human 
common sense, as well as in the domain of computer and 
information science.

� Many computer based applications need to deal with the 
temporal dimension of information, the change of 
information over time and the knowledge about how it 
changes.
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Areas requiring TR:
� Knowledge Representation and Management

� Prediction / Forecast / Planning

� Diagnosis / Explanation (Police, Law, Medical) 

� Database Management / Data Mining

� Industrial Process Control

� Historical Reconstruction (Police, Law, Medical)

� Pattern Reconigiotn

� Natural Language Understanding

etc.
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� Complete and absolute temporal information is rarely 
available and remembered for knowledge representation and 
reasoning, while only incomplete  relative temporal 
knowledge is derived from humans.

� This is in particular typical for Artificial Intelligence 
systems, in which temporal knowledge/Information is 
usually given in some incomplete and/or uncertain form.

Typical feature: 
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Classification of Temporal Information
� Absolute temporal references (easy to deal with):

E.g., “10 am on the 9th of October 2012” and “the last two weeks of September, 
1988”, which refer to times with absolute values;

� Relative temporal references (difficult to deal with):

E.g., “during the time when the Dean was in his office” and “after mid-night”, 
which refer to times that are known only by their relative temporal relations to 
other temporal reference, which again, may be absolute or relative;

� Absolute temporal durations (easy to deal with):

E.g., “45 minutes” and “16 hours”, which refer to some certain amount of 
temporal granularity;

� Relative temporal durations (difficult to deal with):
E.g., “less than 3 hours” and “more than six years but less than 10 years”, which 
refer to some uncertain amount of temporal granularity.
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• How to represent various kinds of 
incomplete and uncertain temporal 
knowledge?

• How to construct a reliable mechanism 
for inference, based on this 
representation?

Two Folds of The Problem
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2. Theories and Models (1)2. Theories and Models (1)

Point-based theory

� The most traditional structure of time is the standard point-based 
theory adopted in classical physics.

� Usually, a point-based theory consists of a pair (P, ≤), where
� P is a set of points,
� ≤ is an order (partial or total) over P.



2. Theories and Models (2)2. Theories and Models (2)
Point-based theory (cont.)

For particular applications, the characteristics of a point-based 
system may be specified in great detail, e.g.:
� linear vs. non-linear (including: parallel, circular, etc.)
� dense vs. discrete

� bounded vs. unbounded

� Some obvious models:
� the real-numbers time (R, <)
� the rational-numbers time (Q, <)
� and the integer-numbers time (Z, <)
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2. Theories and Models (3)2. Theories and Models (3)
Point-based theory (cont.)

� In point-based systems, as the derived temporal objects, intervals 
are usually defined as set, or ordered pairs, of points. E.g.:

Ip = {<p1, p2> | p1 < p2}
� Relations over point-based intervals such as “Equal”, “Before”, 

“Meets”, “Overlaps”, “Starts”, “During” and “After” ( Bruce 
1972), as well as the corresponding reverse relations, can be 
derived from the order relation over time points. 

� The so-called Dividing Instant Problem
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2. Theories and Models (4)2. Theories and Models (4)
Interval-based theory
� An interval-based theory posits a pair (I,R) [Allen 1983]: 

� I is a set of intervals
� R is a set of binary relations over I [All83,84]:

{Meets, Met_by, Equal, Before, After, Overlaps, Overlapped_by, 
Starts, Starts_by, During, Contains, Finishes, Finished_by}

� The intuitive meaning of Meets(i1, i2) is that interval i1 is one of the 
immediate predecessors (not necessarily the unique one) of interval i2.

� By formally characterising the Meets relation as primitive, the other 
12 binary relations can be derived.
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2. Theories and Models (5)2. Theories and Models (5)

Interval-based theory (cont.)

� Interval-based approach avoids the annoying question of whether 
or not a given point is part of, or a member of a given interval, 
which is equivalent to the DIP.

� However, it is not intuitive/convenient to express instantaneous
events, e.g., “The court was adjourned at 4:30pm”, “The heater is 
automatically switched on at 6:00am”, and so on.
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2. Theories and Models (6)2. Theories and Models (6)
Point&Interval -based theory

� A point&interval-based theory [Ma 1994] consists of a triad 
(T,Meets,Dur), where

� T is a non-empty set of time elements

�Meets is a binary order relation over T

�Dur is a function from T to R0
+, the set of non-negative real 

numbers.

� A time element t is called an interval if Dur(t) > 0; otherwise,t 
is called a point.
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2. Theories and Models (7)2. Theories and Models (7)
Point&Interval-based theory (cont.)
� In terms of the single primitive relation Meets, other binary 

relations over points/intervals can be classified into 4 groups:
� Point – Point:

{Equal, Before, After}

� Point – Interval:
{Before, After, Meets, Met_by, Starts, During, Finishes}

� Interval – Point:
{Before, After, Meets, Met_by, Started_by, Contains, Finished_by}

� Interval – Interval:
{Equal, Before, After, Meets, Met_by, Overlaps, Overlapped_by, Starts, 
Started_by, During, Contains, Finishes, Finished_by}
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2. Theories and Models (8)2. Theories and Models (8)
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A triad (T, M, D) to express the temporal reference of a given 
collection of incomplete/uncertain temporal knowledge, where:

• T = {t1, …, tn} is a finite set of time elements, expressing the knowledge 
(possibly incomplete) of what time elements are involved;
• M = {Meets(ti, ti(1)) ∨ … ∨ Meets(ti, ti(j)) | for some i, where 1 ≤ i, i(1), i(j), 
j≤ n} is a collection of disjunctions of Meets relations over T, expressing the 
knowledge (possibly incomplete) as how the time elements in T are related 
to each other by the Meets relations.
• D = {Dur(ti) = ri | for some i where 1 ≤ i ≤ n} is a collection of duration 
assignments (possibly incomplete) to time elements in T.

2. Theories and Models (9)2. Theories and Models (9)
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A temporal reference can be graphically expressed in terms of a directed, 
partially weighted simple graph G, called temporal graph, in which:
•Each time element is denoted as an arrowed-arc with a beginning-vertex 
and an ending vertex; and for time elements with known duration, the 
corresponding arcs are weighted by their durations respectively.

•Relation Meets(ti, tj) is presented by means of merging the ending-vertex of 
time element ti and the beginning-vertex of time element tj as the same 
vertex, of which ti is an in-arc and tj is an out-arc, respectively.

3. A Graphical Representation (1)3. A Graphical Representation (1)
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3. A Graphical Representation (2)3. A Graphical Representation (2)

Demon1
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Logical expressions (“∧” and “∨”) of Meets relations are presented as 
below, respectively:

Meets(ti, tj) ∧ Meets(ti, tk) is denote by defining ti as an in-arc and tj and 
tk as two out-arcs of the same vertex, respectively.

3. A Graphical Representation (3)3. A Graphical Representation (3)
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Meets(ti, tk) ∧ Meets(tj, tk) is denote by defining ti and tj as two in-arcs 
and tk as an out-arcs of the same vertex, respectively.

3. A Graphical Representation (4)3. A Graphical Representation (4)
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Meets(ti, tj) ∨ Meets(ti, tk) is denoted by defining  ti as duplicated 
identical out-arcs of the same vertex, and defining one of the two tis as 
an in-arc and tj as an out-arc of another vertex; and defining the other ti
as an in-arc and tk as an out-arc of the third vertex respectively.

3. A Graphical Representation (5)3. A Graphical Representation (5)
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Meets(ti, tk) ∨ Meets(tj, tk) is denoted by defining tk as duplicated 
identical in-arcs of the same vertex, and defining ti as an in-arc and one 
the two tks as an out-arc of another vertex; and defining tj as an in-arc 
and the other tk as an out-arc of the third vertex respectively.

3. A Graphical Representation (6)3. A Graphical Representation (6)
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Two examples of expressing the logic combination:
first “AND” then “OR”

3. A Graphical Representation (7)3. A Graphical Representation (7)

Meets(ti, tj)
∨Meets(ti, tk1) ∧ Meets(ti, tk2) 

Meets(tj, tk)
∨ Meets(ti1 tk) ∧ Meets(ti2, tk) 
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Two examples of expressing the logic combination:
first “OR” then “AND”.

3. A Graphical Representation (8)3. A Graphical Representation (8)

(Meets(ti, tj) ∨ Meets(ti, tk1)) 
∧ Meets(ti, tk2) 

(Meets(tj, tk) ∨ Meets(ti1 tk))
∧ Meets(ti2, tk) 
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An illustration example, where comma “,” standing for logical 
connective “∧”:

•T1 = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}

•M1 = {Meets(t1, t2), (Meets(t2, t3) ∨ Meets(t2, t4)), Meets(t3, t7), 
Meets(t3, t7), Meets(t4, t5), Meets(t4, t6), Meets(t5, t7), Meets(t5, t8), 
Meets(t7, t9), Meets(t7, t10), Meets(t11, t12),       (Meets(t8, t11), Meets(t6, 
t11) ∨ Meets(t9, t11) ∨ Meets(t10, t11))}

•D1 = {Dur(t2) = 1, Dur(t3) = 2.3, Dur(t6) = 3, Dur(t8) = 2.6, Dur(t10) = 
0.8, Dur(t12) = 1}

3. A Graphical Representation (9)3. A Graphical Representation (9)
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3. A Graphical Representation (10)3. A Graphical Representation (10)
Demon2



For a given temporal graph G, a temporal scenario Gts is defined as a 
maximal sub-graph of G with no duplicated time elements. For 
instances, below are 2 of the 6 (=2*3) temporal scenarios of temporal 
graph for (T1, M1, D1).

3. A Graphical Representation (11)3. A Graphical Representation (11)

28
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A temporal reference

(T, M , D)

is defined as temporal consistent if at least one 
of its temporal scenarios is temporal 
consistent.

4. Temporal Consistency Checking (1)4. Temporal Consistency Checking (1)
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The necessary and sufficient condition for the consistency of a scenario Gts , 
can be given as below:

For each simple circuit in the graph of scenario Gts, the directed sum of 
weights is zero;

For any two adjacent time elements, the directed sum of weights is bigger than 
zero.

Condition 1. guarantees that there exists a valid duration assignment function Dur to the time 
elements in scenario Gts agreeing upon D;

Condition 2. ensures that no two time points meet each other, that is between any two time 
points, there is an interval standing between them.

4. Temporal Consistency Checking (2)4. Temporal Consistency Checking (2)
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• The consistency checking for a temporal scenario with duration 
constraints involves searching for simple circuits, and constructing a 
numerical constraint for each circuit. 

• The existence of a solution(s) to this set of constraints implies the 
consistency of the temporal scenario and hence of the temporal reference, 
where each solution gives a possible case that can subsume the addressed 
temporal scenario. In fact, the consistency checker for temporalreferences 
can be transformed into linear programming problem.

• For instance, the temporal reference (T1, M 1, D1) is consistent since one of 
its temporal scenarios, e.g., temporal scenario 1 is consistent.In fact, by 
assigning duration value of 0.4 to t4, it will make both temporal scenarios 
1 and 2 consistent.  

4. Temporal Consistency Checking (3)4. Temporal Consistency Checking (3)
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5. Case Study (1) 5. Case Study (1) 
Two persons, Peter and Jack, are suspected of committing a murder during 
the daytime. In court, Jack and Peter gave the following statements, 
respectively:

Peter’s statements:
I got home with Jack before 1pm. We had our lunch, and when Jack left I put on a 
video. The video lasts 2 hours. Before it finished, Robert arrived. When the video 
finished we went to the train station and waited until Jack came at 4 pm.

Jack’s statements:
Peter and me went to his home and arrived there before 1pm. When we finished our 
lunch there, Peter put on a video, and I left and went to the supermarket. I stayed there 
for between 1 and 2 hours. Then I drove to my home to collect some mail. It takes 
between 1.5 to 2 hours to reach my home, and about the same to the train station. I 
arrived at the train station at 4 pm.
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5. Case Study (2)5. Case Study (2)

In addition, being a witness, Robert made this statements:

I left home at 2 pm and went to Peter’s house. He was playing a video, and we waited 
till it finished. Then we went together to the train station and waited for Jack. Jack 
got to the train station at 4pm.

We can use the following temporal references for the corresponding 
statements in the above scenario: 



34

5. Case Study (3)5. Case Study (3)
i1: the time (interval) over which Peter and Jack went to Peter’s home;
1pm: the reference time (point) before which they arrived at Peter’s home;
i2: the time (interval) over which Peter and Jack had lunch;
i3: the time (interval) over which Peter played the video (Dur(i2) = 2);
i4: the time (interval) over which Jack went to the supermarket;
p1: the time (point) when Robert arrived at Peter’s house;
i5: the time (interval) over which Peter and Robert went to the train station;
i6: the time (interval) over which Peter and Robert waited for Jack at the train station;
4pm: the time (point) when Jack arrived at the train station;
i7: the time (interval) over which Jack stayed in the supermarket (1<Dur(i7)< 2);
i8: the time (interval) over which Jack drove to his home (1.5<Dur(i8)< 2);
i9: the time (interval) over which Jack collected some post from his home;
i10: the time (interval) over which Jack drove to the train station  (1.5<Dur(i10)<2);
2pm: the time (point) when Robert left home;
i11: the time (interval) over which Robert went to Peter's house;
i12: the time (interval) over which Peter and Robert watched the video together;
i13, ..., i27:some extra relative time elements which are used for expressing the correspondingly relative

duration knowledge, e.g., with i19, i20, i21, i22, and Dur(i19) = 1.5 and Dur(i21) = 2, we can get 
1.5 < Dur(i8) < 2.



5. Case Study (5. Case Study (44))
� i1 meets i2
� i2 meets i4
� 1pm during i2 
� 1pm before 2pm
� 2pm meets i11
� i11 meets p1
� p1 meets i12
� i12 meets i5
� i2 meets i3
� i3 meets i5
� i5 meets i6

� i6 meets 4pm
� i4 meets i7
� i15 during i7
� i7 during i17
� i7 meets i8
� i19 during i8
� i8 during i 21
� i8 meets i9
� i9 meets i10
� i23 during i10
� i10 during i25
� i10 meets 4pm
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5. Case Study (5. Case Study (55))
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5. Case Study (6)5. Case Study (6)
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5.Case Study (7)5.Case Study (7)

Consider if the above temporal knowledge is consistent or 
inconsistent:

Since each interval has a positive duration and each point has a non-negative duration,  we can easily see 
that: Dur(i5) + Dur(i6) < 2
In addition, since Dur(i3) = 2, hence: Dur(i3) + Dur(i5) + Dur(i6) < 2 + 2 = 4

However,
Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10) > 0 + 1 + 1.5 + 0 + 1.5 = 4

Therefore, for the simple circuit i3, i5, i6, i10, i9, i8, i7, i4,  as shown in the following figure, there does not 
exist any possible duration assignment over the relevant time elements agreeing upon Dur, such that

Dur(i3) + Dur(i5) + Dur(i6) = Dur(i4) + Dur(i7) + Dur(i8) + Dur(i9) + Dur(i10)
that is,

Dur(i3) + Dur(i5) + Dur(i6) −−−− Dur(i4) −−−− Dur(i7) −−−− Dur(i8) −−−− Dur(i9) −−−− Dur(i10) = 0



5.Case Study (8)5.Case Study (8)
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5. Case Study (9)5. Case Study (9)

Therefore, the temporal knowledge shown in the above is inconsistent, 
and hence some statements are untrue.

Suppose the video can be checked that it did actually last for two hours, 
then we can confirm that there must be some falsity  in either Robert's or 
Jack's statements. If it can be proved that Robert did left home at 2 pm, 
then Jack must have lied when making his statements. Otherwise, to 
convince that his statements are true, Jack must prove that Robert left 
home at some time before 2 o’clock in the afternoon.



Software showingSoftware showing

Demon3
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� In terms of directed and partially weighted simple graph, 
a graphical representation for uncertain and incomplete 
temporal knowledge is proposed.

� It allows logical expressions of both absolute and relative 
temporal relations.

� Based on the graphical representation of a given 
collection of partial temporal  knowledge, it can be 
checked if the corresponding temporal reference is 
temporally consistent or inconsistent, and derive the 
corresponding explanations  ��������(Future Work )

6. Conclusions6. Conclusions


