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1. Introduction

A Simple Question:

Am | asking a silly question?




What, then Is time?

® |f N0 one asks me,

| know;

® But if | want to explain it to a questioner,

| don’t know.

Augustine of Hippo (Confessions XI, X1V)
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.
Why time?

Time plays an fundamental role in modelling natural
phenomena and human activities concerning the dynaim
aspects of the real world.

Temporal reference is an idea deeply integrated ihuman
common sense, as well as in the domain of compueand
iInformation science.

Many computer based applications need to deal witthe
temporal dimension of information, the change of
Information over time and the knowledge about howti

changes.
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Areas requiring TR;

Knowledge Representation and Management
Prediction / Forecast / Planning
Diagnosis / Explanation (Police, Law, Medical)
Database Management / Data Mining
ndustrial Process Control
Historical Reconstruction (Police, Law, Medical)
Pattern Reconigiotn

Natural Language Understanding
etc.
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Typical feature:

Complete and absolute temporal information is yarel
available and remembered for knowledge representamnd
reasoning, while only incomplete relative temporal
knowledge is derived from humans.

This is in particular typical for Artificial Inteljence
systems, in which temporal knowledge/Information IS
usually given in some incomplete and/or uncertarmt
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Classification of Temporal Information

Absolute temporal references (easy to deal with):

E.g., “10 am on the 9th of October 2012” and “the lst two weeks of September,
1988”, which refer to times with absolute values;

Relative temporal references (difficult to deal with):

E.g., “during the time when the Dean was in his oikfe” and “after.mid-night”,
which refer to times that are known only by their relative temporal relations to
other temporal reference, which again, may be absatle or relative;

Absolute temporal durations (easy to deal with):

E.g., “45 minutes” and “16 hours”, which refer to sane certain amount of
temporal granularity;

Relative temporal durations (difficult to deal with):

E.g., “less than 3 hours” and “more than six years bt less than 10 years”, whicr
refer to some uncertain amount of temporal granulaity.
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o
Two Folds of The Problem

« How to represent various kinds of
Incomplete and uncertain temporal
knowledge?

e How to construct a reliable mechanism
for inference, based on this
representation?
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2. Theories and Models (1)

Point-based theory

The most traditional structure of time is the standird point=based
theory adopted in classical physics.

Usually, a point-based theory consists of a paiP( =), where
P is a set of points,
< Is an order (partial or total) over P.
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2. Theories and Models (2)

Point-based theory (cont.)

For particular applications, the characteristics ofa point-based
system may be specified in great detall, e.q.:

linear vs. non-linear (including: paralld, circular, etc.)
dense vs. discrete
bounded vs. unbounded

Some obvious models:
the real-numberstime (R, <)
the rational-numberstime (Q, <)
and the integer-numberstime (Z, <)
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2. Theories and Models (3)

Point-based theory (cont.)

In point-based systems, as the derived temporal adgts, intervals
are usually defined as set, or ordered pairs, of pus. E.g.:

Ip={<py, P> | P, < P}
Relations over point-based intervals such as “Equal™Before”,
“Meets”, “Overlaps”, “Starts”, “During” and “After” (  Bruce
1972), as well as the corresponding reverse relaig, can be
derived from the order relation over time points.
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2. Theories and Models (4)

Interval-based theory

An interval-based theory posits a pair [,R) [Allen 1983]:
| Is a set of intervals

R is a set of binary relations ovel [AlI83,84]:

{Meets, Met_by, Equal, Before, After, Overlaps, Ovaapped by,
Starts, Starts_by, During, Contains, Finishes, Firshed by}

The intuitive meaning of Meets(], I,) Is that interval i, Is one of the
Immediate predecessors (not necessarily the uniqoae) of interval L.

By formally characterising the Meets relation as pmitive, the other
12 binary relations can be derived.
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2. Theories and Models (5)

Interval-based theory (cont.)

Interval-based approach avoids the annoying questioof whether
or not a given point is part of, or a member of a yen interval,
which Is equivalent to theDIP.

However, it IS not intuitive/convenient to expresmstantaneous
events, e.qg., “The court was adjourned at 4:30pm™The heater IS
automatically switched on at 6:00am”, and so on.
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2. Theories and Models (6)

Point&Interval -based theory

A point&interval-based theory [Ma 1994] consists ofa triad
(T,Meets,Dur), where

T Is a non-empty set of time elements
Meets Is a binary order relation over T

Dur is a function from T to R,*, the set of nonnegative ree
numbers.

A time element t is called an interval if Dur(t) >0; otherwise,
IS called a point. 14
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2. Theories and Models (7)

Point&Interval-based theory (cont.)

In terms of the single primitive relation Meets, oher binary
relations over points/intervals can be classifiechio 4 groups:
Point — Point:
{Equal, Before, After}
Point — Interval:
{Before, After, Meets, Met_by, Starts, During, Finshes}
Interval — Point:
{Before, After, Meets, Met_by, Started by, ContainsFinished by}
Interval — Interval:

{Equal, Before, After, Meets, Met_by, Overlaps, Ovaapped_ by, Starts,

Started by, During, Contains, Finishes, Finished_Ry
15



2. Theories and Models (8)
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2. Theories and Models (9)

A triad (T, M, D) to express the temporal referenceof a given
collection of incomplete/uncertain temporal knowlede, where:

» T = {t;, ..., 1} Is a finite set of time elements, expressingithewledge
(possibly incomplete) of what time elements arelingd

* M = {Meets(t, t,)) U... U Meets(}, t;) | for some I, where 21, i(1), i(),
< n} Is a collection of disjunctions of Meets relatover T, expressing th
Knowledge (possibly incomplete) as how the timaenelets in T ce related
0 each other by the Meets relatic

» D = {Dur(t)) = r, | for some | where ¥ 1 < n} is a collection of duratior
assignments (possibly incomplete) to time elemients
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3. A Graphical Representation (1)

A temporal reference can be graphically expresséerms of a directed,
partially weighted simple graph G, called tempam@ph, in which:
*Each time element is denoted as an arrowed-arcanpginning-vertex
and an ending vertex; and for time elements witbmkmduration, the
corresponding arcs are weighted by their duratiespectively.

t; = (U

*Relation Meets(ft) is presented by means of merging the endegex of
time element;tand the beginning-vertex of time elemersithe same
vertex, of which;tis an in-arc and is an out-arc, respectively.

t £ (0.8)

e :
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3. A Graphical Representation (2)

e il i

' Nature language view ogic language View

Graph Wiew Checking Wiew

Mew element Connection Description |Meets il 5 Crraw graph

Graph Cperating

MName: |t MName:

Description Description

Demonl



3. A Graphical Representation (3)

Logical expressions (T’ and “[I") of Meets relations are presented as
below, respectively:

Meets(f, t) [1Meets(f, t) Is denote by defining &s an in-arc and and
t, as two out-arcs of the same vertex, respectively.
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3. A Graphical Representation (4)

Meets(t, t) U Meets(f, t) is denote by defining &nd fas two in-arcs
and f as an out-arcs of the same vertex, respectively.




3. A Graphical Representation (5)

Meets(t, t) U Meets(f t) Is denoted by defining ; &s duplicatec
iIdentical out-arcs of the same vertex, and-defirang of the two.$ as
an in-arc and, s an out-arc of another vertex; and defining therof

as an in-arc ang &s an out-arc of the third vertex respectively.




3. A Graphical Representation (6)

Meets(t, t) O Meets(f t) Is denoted by defining, tas duplicatec
Identical in-arcs of the same vertex, and defirtjregs an in-arc and on
the two fs as an out-arc of another vertex; and definjrag tan in-arc
and the other tas an out-arc of the third vertex respectively.




3. A Graphical Representation (7)

Two examples of expressing the logic combination:
first “AND” then “OR”

Meets(, t) Meets({, t)
Meets(}, t,,) OMeets(t, t.,) OMeets(f t,) OMeets(, t)




3. A Graphical Representation (8)

Two examples of expressing the logic combination:
first “OR” then “AND".

(Meets(t, t) O Meets(, t,)) (Meets(}, t,) U Meets(}, t,))
O Meets(}, t.,) O Meets(h, t)




3. A Graphical Representation (9)

An illustration example, where comma “,” standing lagical
connective fT"

T ={t, LG 4 & b & G L, G

M, = {Meets(t, t,), (Meets(}, t;) L Meets(}, t,)), Meets(t, t,),
Meets(t, t;), Meets(}, t), Meets(}, t)), Meets(t, t), Meets(t, ty),
Meets(t, ty), Meets(, t,,), Meets(i,, t;,), (Meets{ t;,), Meets(§,
t,,) UMeets(t, t,) L Meets(t,, t;1))}

*D, = {Dur(t,) = 1, Dur(t) = 2.3, Dur(f) = 3, Dur(t) = 2.6, Dur(fy) =
0.8, Dur(t,) = 1} 26
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3. A Graphical Representation (10)

Demon?2




3. A Graphical Representation (11)

For a given temporal graph G, a temporal scena¥iaosGlefined as ¢
maximal sub-graph of G with no duplicated time et@ts. For
Instances, below are 2 of the 6 (=2*3) temporahaaes of tempora

graph for T,, M, D).

taiz 2 tv tmqoe;o\\o
11
o t1 _ " t= EBJO\L\O tiz O
ta teizy




4. Temporal Consistency Checking (1)

A temporal reference
(T, M, D)

IS defined as temporal consistent If at least ¢
of its temporal scenarios Is temporal
consistent. B



4. Temporal Consistency Checking (2)

The necessary and sufficient condition for the =tency of escenario G,
can be given as below:

For each simple circuit in the graph of scenars, the directed sum of
weights Is zero;

For any two adjacent time elements, the directed suweightsis bigger the
ZEro.

Condition 1. guarantees that there exists a valictcbn assinment function Dur to the t
elements in scenario&agreeing upon D;

Condition 2. ensures that no two time points mestheother, tat is between any two |
points, there is an interval standing between them.
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4. Temporal Consistency Checking (3)

» The consistency checking for a temporal scenarigh wauratior
constraints involves searching for simple circugsd construmg a
numerical constraint for each circuit.

» The existence of a solution(s) to this set of a@msts implies the
consistency of the temporal scenario and henchectdmporaleference
where each solution gives a possible case thaswbasume thedmresse
temporal scenario. In fact, the consistency chefiketemporakeference
can be transformed into linear programming problem.

» For instance, the temporal referente, M ;, D,) Is consistent since one
Its temporal scenarios, e.g., temporal scenari® donsistentin fact, by
assigning duration value of 0.4 tp it will make both temporal scenar
1 and 2 consistent.
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5. Case Study (1)

Two persons, Peter and Jack, are suspected of conttimg a murder during
the daytime. In court, Jack and Peter gave the fadwing statements,
respectively:

Peter's statements:
| got home with Jack before 1pm. We had our lunch, ad when Jack left | put on.a
video. The video lasts 2 hours. Before it finished, Rert arrived. When the video
finished we went to the train station and waited unt Jack came at 4 pm.

Jack’s statements:
Peter and me went to his home and arrived there befe 1pm. When we finished ‘our
lunch there, Peter put on a video, and | left and wa to the supermarket. | stayed there
for between 1 and 2 hours. Then | drove to my hometcollect some mail. It takes
between 1.5 to 2 hours to reach my home, and aboltg same to the train station. |
arrived at the train station at 4 pm.
32



5. Case Study (2)

In addition, being a witness, Robert made this staments:

| left home at 2 pm and went to Peter’'s house. He wasgyling a video, and we waited
till it finished. Then we went together to the trainstation and waited forJdack. Jack
got to the train station at 4pm.

We can use the following temporal references for theorresponding
statements in the above scenario:
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5. Case Study (3)

i

lpm:

10

2pm:

11
|121

the time (interval) over which Peter and Jack wento Peter's home;

the reference time (point) before which they aived at Peter’'s home;

the time (interval) over which Peter and Jack hadunch;

the time (interval) over which Peter played the wileo Our(i,) = 2);

the time (interval) over which Jack went to the spermarket;

the time (point) when Robert arrived at Peter’'s hause;

the time (interval) over which Peter and Robert wat to the train station;

the time (interval) over which Peter and Robert wated for Jack at the train station;
the time (point) when Jack arrived at the trainstation;

the time (interval) over which Jack stayed in thesupermarket (1<Dur(i-)< 2);
the time (interval) over which Jack drove to his lome (1.5Dur(ig)< 2);

the time (interval) over which Jack collected som@ost from his home;

the time (interval) over which Jack drove to the tain station (1.5<Dur(i,y)<2);
the time (point) when Robert left home;

the time (interval) over which Robert went to Pet€&'s house;

the time (interval) over which Peter and Robert wached the video together;

I, ..., by:SOmMe extra relative time elements which are usedif expressing the correspondingly relative

duration knowledge, e.g., with jg, Iy, I54, 1,5, @and Dur(i,g) = 1.5 andDur(i,,) = 2, we can get

1.5 <Dur(iy) < 2.
5 ur(ig) 2



5. Case Study (4)

11 meets 12 I6 meets 4pm

12 meets 14 i4 meets i7

1pm during i2 i15 during.i7
17 during 117

1pm before 2pm

) I/ meets 18
2pm meets 111 19 during i8
111 meets_pl i8 during i 21
Pl meets 112 i8 meets i9
112 meets 15 i9 meets i10
12 meets i3 123 during 110
i3 meets i5 110 during 125
i5 meets i6 110 meets 4pm
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5. Case Study (5)

Hame : Z2pm

Hame: 111 Hame: pl

Hame : lpm Hame : 112
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5. Case Study (6)

ti-
ti- tiz




5.Case Study (7)

Consider if the above temporal knowledge Is consestt or
Inconsistent:

Since each interval has a positive duration and eh@oint has a non-negative duration, we:can easikee
that: Dur(ig) + Dur(ig) < 2
In addition, since Dur(i;) = 2, hence: Dur(i;) + Dur(ig) + Dur(iy)) <2 +2 =4

However,
Dur(i,) + Dur(i,) + Dur(ig) + Dur(ig) + Dur(i,j)) >0+1+15+0+15=4

Therefore, for the simple circuit i, i, g, i1, Ig, Ig, I+, I, @S shown in the following figure, there does not
exist any possible duration assignment over the revant time elements agreeing upobur, such that
Dur(i;) + Dur(ig) + Dur(ig) = Dur(i,) + Dur(i-) + Dur(ig) + Dur(ig) + Dur(i,,)
that is,
Dur(i;) + Dur(ig) + Dur(ig) — Dur(i,) — Dur(i,) — Dur(ig) — Dur(ig) — Dur(i,) =0
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5.Case Study (8)

~+0h, This is _
inconsisitent !
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5. Case Study (9)

Therefore, the temporal knowledge shown inthe abswnconsistent,
and hence some statements are untrue.

Suppose the video can be checked that it did dgtiaat for two hours,
then we can confirm that there must be some falsitgither Robert's er
Jack's statements. If it can be proved that Raberdeft home at2 pm,
then Jack must have lied when making his stateméxt&rwise, to
convince that his statements are true, Jack maseghat Robert left
home at some time before 2 o’clock in the afternoon
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Software showing
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6. Conclusions

In terms of directed and partially weighted simplegraph,
a graphical representation for uncertain and incompeéte
temporal knowledge is proposed.

It allows logical expressions of both absolute aneklative
temporal relations.

Based on the graphical representation of a given
collection of partial temporal knowledge, it can le
checked if the corresponding temporal reference Is
temporally consistent or inconsistent, and derivehte
corresponding explanations
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